
1

On the Management of Compositions of Web Services

Vladimir Tosic, Bernard Pagurek, Babak Esfandiari, Kruti Patel
Network Management and Artificial Intelligence Lab

Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
{vladimir, bernie, babak, kpatel}@sce.carleton.ca

ABSTRACT
We present our work on Web services with multiple classes
of service, called service offerings, and on management and
dynamic (i.e., runtime) adaptation of their compositions.
We explain the motivation for Web services with multiple
service offerings, present some management and dynamic
adaptation algorithms based on the manipulation of pro-
vided service offerings, and discuss some of the issues with
the corresponding management infrastructure, called
DAMSC (Dynamically Adaptable and Manageable Service
Compositions), that we are developing. We also briefly
present our work on WSOL (Web Service Offerings Lan-
guage) – an extension of WSDL (Web Services Description
Language) that enables specification of various types of
constraints—functional, non-functional (QoS – Quality of
Service), authorization policies, etc.—and specification of
Web services with multiple service offerings. At the end,
we summarize some of the challenges for future research in
the area of management and dynamic adaptation of compo-
sitions of Web services.

Keywords
Management of compositions of Web services, manage-
ment of Web services, dynamic adaptation, Web services,
classes of service, service offerings, WSOL.

1 INTRODUCTION
Our research group has extensive experience in the area of
management of computer and communication networks,
distributed systems, and services. In the past, our research
focussed on challenges particular to the domain of network
management and exploration of application of advanced
technologies for network management. We have extensive
experience with network management standards like SNMP
(Simple Network Management Protocol) and CMIP
(Common Management Information Protocol), as well as
the CIM (Common Information Model) standard for dis-
tributed system management. We investigated the use of
mobile agent technologies and artificial intelligence tech-
niques to enhance how a network is controlled and man-
aged. In addition, we studied the issues how to extend
SNMP network management solutions to allow monitoring
and control of mobile agents visiting the network and how
to integrate mobile agents and SNMP network management
solutions. We have also explored some other management
technologies, e.g., policy-based management and web-
based management. In recent years, our focus has shifted
more towards service-level management and to researching

some software management issues in the context of the
broader management of distributed systems, networks, ap-
plications, and services. Consequently, some of our recent
research projects investigate issues that related to the man-
agement of Web services and their compositions.

The project on dynamic service composition [7] explored
three different techniques for dynamic (i.e., runtime) crea-
tion of composite services from service components. The
three techniques are: 1) creation of a composite service
interface; 2) creation of a new composite service based on
the pipe-and-filter architecture; and 3) creation of a new
composite service by extracting and weaving code of com-
posed service components. We designed and implemented
a general-purpose dynamic service composition architec-
ture called the Infrastructure for Composability At Runtime
of Internet Services (ICARIS). Jini, JavaBeans, and XML
were used for the prototype implementation of the ICARIS
architecture. To illustrate a justifiable use of dynamic
service composition techniques, this implementation of
ICARIS was successfully used for dynamic construction
and deployment of security associations between a client
and a server in a network. As Web services are a special
case of our concept of service components, the experiences
and insights from this project are useful for researching
dynamic composition of Web services.

The project on software hot-swapping [4] is investigating
the issue of dynamic evolution of software without dis-
rupting its operation. As noted in [9], a number of research-
ers tried to address this problem taking very different ap-
proaches. Our approach is based on the concept of swap-
pable modules (S-modules) and corresponding non-
swappable proxies (S-proxies). We have developed our
own hot-swapping infrastructure and successfully applied it
to a modular SNMPv3 (SNMP, version 3) network man-
agement system implemented in Java. The experiences
from this project are relevant for dynamic evolution of Web
services without disrupting operation of their compositions.

To enable a composition of Web services to be more flexi-
ble and adaptable to various changes and disturbances that
can occur, we are also exploring Web services with multi-
ple classes of service and management algorithms based on
the manipulation of provided classes of service. We are
also developing a corresponding management infrastructure
and a specification language for Web services with multiple
classes of service. Pay-per-use e- and m-business (i.e.,

2

electronic and mobile business) Web services are one of the
main motivating examples for this project that will be de-
scribed in more detail in this paper.

Several of our other ongoing research projects are also re-
lated to the management of Web services and their compo-
sitions. For example, one project studies management of
Internet telephony service compositions based on the
AT&T’s DFC (Distributed Feature Composition) compo-
nent-based architecture for telecommunication services.
Also, some members of our research group are working on
security management of peer-to-peer (P2P) architectures.

After the description of our work on Web services with
multiple classes of service and dynamic management of
their compositions in the next two sections, we will sum-
marize some issues related to the management of composi-
tions of Web services in the last section.

2 WEB SERVICES WITH MULTIPLE CLASSES
OF SERVICE AND THEIR SPECIFICATION

A Web service is a unit of business, application, or system
functionality that can be accessed over a network by using
XML messaging. It can provide not only software func-
tionality and data, but also access to some hardware re-
sources like memory, printing, network bandwidth, etc. The
motivation for the W3C’s (World Wide Web Consortium)
Web services framework [3] is to develop a standard plat-
form for distributed application-to-application (A2A) and
business-to-business (B2B) integration. Consequently, al-
though in principle Web services can be used for providing
services to end users, the true power of the W3C’s Web
services framework is leveraged through compositions of
Web services. The composed Web services can be distrib-
uted over the network, running on different platforms, im-
plemented in different programming languages, and pro-
vided by different vendors. The composition provides an
added value, either to end users or for further A2A integra-
tion, when a composition of Web services can itself be-
come a higher-level Web service. Particularly important is
the possibility to compose Web services dynamically (i.e.,
during runtime), in a manner possibly unanticipated during
design-time and deployment-time. Dynamic composition of
Web services promises to increase agility and flexibility of
A2A and B2B integrations, while minimally interrupting
running applications.

Hereafter, by a consumer of a Web service A we assume
another Web service that is composed with A and collabo-
rates with it, not an end user (human) using A.

A Web service can serve many different consumers, possi-
bly at the same time. To improve flexibility and adaptabil-
ity of compositions of Web services, it can be useful for a
Web service to offer several different classes of service.
Providing differentiated services and multiple classes of
service are well-known concepts in telecommunication
service engineering and management [1], [6]. We have
extended these concepts to address issues relevant for Web
services and their compositions.

We define a service offering as one class of service of one
Web service. Service offerings of one Web service relate to
the same functionality, but differ in constraints, like
authorization rights and quality of service (QoS) con-
straints, as well as cost. For example, service offerings can
differ in usage privileges, service priorities, response times
guaranteed to consumers, verbosity of response informa-
tion, etc. Service offerings can also differ in the utilization
of the underlying hardware and software resources.

The issues of QoS and balancing of limited underlying re-
sources are particularly motivating for having multiple
classes of service for Web services. If the underlying re-
sources were unlimited, all consumers would always get
the highest possible QoS. Unfortunately, this is not the
case, so it is suitable to provide different QoS to different
classes of Web service’s consumers. Web services provided
by third parties on a pay-per-use basis are very illustrative
in this respect. Their providers want to achieve maximal
monetary gain with the optimal utilization of resources. On
the other hand, consumers want to receive service and QoS
they need and are willing to pay for, while minimizing the
price/performance ratio. Providing different classes of
service for a Web service increases the chance of succeed-
ing in the market because of the flexibility to accommodate
several classes of consumer and provide to a consumer an
appropriate level of QoS. It also supports different capa-
bilities and rights of consumers of the Web service.

The advantage of having a relatively limited number of
classes of service over other types of service customization
is limited complexity of required management. Our ap-
proach does not exclude applying in addition other methods
for customization of service and QoS (e.g., parameter-
based), but in the latter case management can be more
complex. Similarly, we find personalization techniques
aimed at human users to be too complex for customization
of Web services in compositions of e- and m-business Web
services. As we are particularly addressing compositions of
Web services, we want to limit the complexity in order to
assure that solutions are scalable to large compositions of
Web services. Note also that, as the level of common infra-
structure for Web services has to be as minimal as feasible,
we believe that too complex management solutions do not
fit into the W3C’s Web services framework.

To specify Web services with multiple service offerings we
are developing an extension of WSDL (Web Services De-
scription Language) called WSOL (Web Service Offerings
Language). In WSOL, we place a particular emphasis on
the comprehensive formal specification of different types of
constraints. WSOL enables specification of functional con-
straints (pre- and post-conditions, and invariants), non-
functional constraints (QoS guaranteed to consumers and
QoS required from supplier Web services), authorization
policies, cost, and other relevant information and con-
straints. Known relationships with and dependencies on
other Web services and/or infrastructure (including hard-
ware) can also be specified in WSOL. Note that authoriza-

3

tion policies specified in WSOL describe what subset of a
Web service’s functionality a service offering provides and
under what conditions. Due to security reasons, authoriza-
tion policies describing conditions under which particular
classes of consumer may use a service offering are speci-
fied outside the WSOL description of a Web service. While
a service offering contains specification of different types
of constraints, these specifications are separated into multi-
ple distinct layers to achieve greater flexibility and reus-
ability of specifications. We are still studying some issues
related to this separation and integration of different types
of constraints and different dimensions of QoS.

As the number of Web services in the market that offer
similar functionality increases, the offered QoS and
price/performance ratio, as well as adaptability, will be-
come the main competitive advantages. The comprehensive
specification of Web services and service offerings in
WSOL supports choosing appropriate Web services and
service offerings. In addition, it can be beneficial to mini-
mize unexpected feature interactions between Web services
in their compositions.

The ideas from [2] and some ideas from [5] influenced the
work on WSOL. Although [8] also described an XML-
based specification of various constraints, their specifica-
tion is not WSDL compatible, does not address QoS con-
straints in depth, and does not address specification of mul-
tiple classes of service.

3 DYNAMIC MANAGEMENT OF COMPOSI-
TIONS OF WEB SERVICES WITH MULTIPLE
SERVICE OFFERINGS

While dynamic composition of Web services promises to
increase agility and flexibility of A2A and B2B integra-
tions, we see it only as a part of the agile, flexible, and
adaptable e- and m-business solutions. To further increase
flexibility and adaptability of e- and m-business solutions
compositions of Web services have to be managed.

One of the goals of our research is to achieve management
and dynamic adaptation of compositions of Web services
without breaking an existing relationship between a Web
service and its consumer. This goal differentiates our work
from the past work on adaptable software, like the archi-
tecture-based approaches based on finding alternative com-
ponents and rebinding [9]. To achieve this goal we are ex-
ploring management and dynamic adaptation mechanisms
that are based on the manipulation of service offerings.
Further, we are developing an appropriate management
infrastructure, called DAMSC (Dynamically Adaptable and
Manageable Service Compositions). Our dynamic adapta-
tion mechanisms include switching between service offer-
ings, deactivation/reactivation of existing service offerings,
and creation of new appropriate service offerings.

We believe that our mechanisms are beneficial for both
Web service providers and their consumers, especially in
the case of pay-per-use relationships in e- and m-business.
Pay-per-use Web service providers do not want to lose ex-

isting consumers when changes occur. If consumers have to
find another Web service to accommodate the change, they
might chose one from a competing vendor. On the other
hand, in many cases the change has to be accommodated
very quickly. In some cases, finding and choosing an ap-
propriate alternative Web service can turn out to be too
slow and its success cannot always be guaranteed. In addi-
tion, for some consumers it may be inconvenient to look for
another Web service every time the circumstances of op-
eration change. Such a situation may occur in e- and m-
business systems when choosing an alternative Web service
would require establishment of new trust relationships.

Dynamic switching between service offerings is the basic
method for dynamic adaptation in our work. Switching can
be initiated by a consumer or by the Web service. This
mechanism enables consumers to dynamically adapt the
service they receive without the need to find another Web
service. It also enables Web services to gracefully degrade
or upgrade their service and QoS in case of changes.

Deactivation and reactivation of service offerings is used
by a Web service in cases when changes in operational
circumstances affect what service offerings it can provide
to consumers. Some service offerings provided by a Web
service cannot be used in all circumstances. For example, it
can be sometimes impossible to achieve high QoS or too
dangerous to offer low security service offerings. When a
change of circumstances occurs (e.g., QoS provided by
used service components can rise and fall), a Web service
can dynamically and automatically deactivate service of-
ferings that cannot be supported in the new circumstances.
The issue is what to do with consumers using the deacti-
vated service offering. We are developing support for han-
dling such cases. In our solution, the service component
automatically switches the affected consumers to another
service offering and then notifies them about the change.
The crucial question in this automatic switching is how to
relate service offerings in order to decide on which one to
switch. We are exploring several possible alternatives for
representing these relationships. Note that if there is no
appropriate replacement service offering, an alternative
service component has to be sought. When an affected con-
sumer receives a notification of automatic switching of
service offerings, it can decide what to do next in the spe-
cific situation. Some examples of consumer decisions are
accepting the automatic change of service offerings, ex-
plicit switching to another service offering that it estimates
to be more appropriate, and discarding the affected Web
service invocation. Note that as consumers are other Web
services these decisions are done by some programming
logic and not by human intervention. The deactivated
service offering might be reactivated automatically at a
later time after another change of circumstances and,
eventually, the consumers can be automatically switched
back to their original service offering and notified about the
change. This helps to achieve as much as possible of the
originally intended level of service and QoS. However, the

4

consumer also has a possibility to notify the Web service
that it is not interested in automatic restoration of the origi-
nal service offering. The described simple algorithm for
automatic switching of service offerings helps in almost
instantaneous autonomous adaptation to disturbances with
minimal loss of service and QoS.

We are also working on infrastructure support and appro-
priate algorithms for dynamic creation of new service of-
ferings for existing Web services. As all circumstances of
runtime operation (e.g., some issues related to QoS) and
needs of all consumers cannot be predicted in advance, this
mechanism is needed as an addition to the concept of Web
services with multiple service offerings to enable further
flexibility, customizability, and adaptability. Note that
creation of new service offerings is not creation of new
functionality, but creation of new sets of constraints (pri-
marily QoS constraints and authorization policies) for the
existing functionality. However, it can be used as support
for dynamic evolution of Web services. When a Web serv-
ice is dynamically updated to improve performance and/or
add new functionality, new service offerings can describe
changes for consumers, e.g., new levels of QoS and
authorization policies for the new functionality. When they
are notified about the new service offerings, consumers
may choose to switch to them or the service component can
do the switching automatically when some old service of-
ferings are no longer supported. Dynamic creation of new
service offerings is both a powerful and a dangerous feature
that cannot be performed arbitrarily due to various possible
conflicts. Therefore, we suggest that service components
have strict control over the service offerings that they offer,
performing creation of new service offerings only in certain
circumstances and after rigorous conflict checks. Examples
of possible circumstances are when: 1) the implementation
has dynamically changed (e.g., in the case of dynamic ver-
sioning/evolution); 2) some other service components used
dynamically have updated their service offerings (e.g., offer
better QoS); 3) an important (e.g., “premium”) client has
requested creation of a new service offering.

Although the dynamic adaptation mechanisms that we are
developing have limited power compared to finding alter-
native Web services, they enable faster and simpler adapta-
tion and enhance robustness of the relationship between a
Web service and its consumer. These mechanisms do not
require human intervention and can be performed almost
instantaneously. They enable also Web services to retain
existing consumers and do not require establishment of new
trust relationships between e- and m-business Web serv-
ices. We believe that these mechanisms are suitable for
situations when the required adaptation is relatively limited
and acceptable for the consumer. Examples of such adapta-
tions are a small temporary degradation of service and a
temporary switch to a more expensive class of service in
order to sustain the overall level of service. These mecha-
nisms could be used for accommodating changes, espe-

cially relatively frequent changes, which cannot be accom-
modated on lower system levels.

The idea of sessions in the DAMSC infrastructure is similar
to the idea of persistent connections between Web services
and their consumers mentioned in [3]. A consumer may use
a Web service either invoking individual operations or by
opening sessions. With sessions, the authentication and
authorization of a consumer to use the Web service and its
service offerings, as well as other appropriate checks (e.g.,
leasing, current availability of resources, etc.), occur only
once, at session opening. Sessions also enable keeping the
information about the state of interaction, including what
service offering is used. A Web service may (but need not)
allow multiple parallel sessions with the same consumer
and the consumer may use different service offerings for
these sessions. The consumer may use only one service
offering in one session with the Web service at a time, but
it can dynamically switch service offerings without session
termination or losing the session state. Some of the checks
performed at session opening need not be repeated when
switching occurs. However, checks related to the switched
service offering (e.g., the usage rights, current availability
of resources, etc.) must be performed.

We have researched several alternatives for service offering
enforcement, monitoring, and control and developed the
concept of a session object. A session object is automati-
cally generated at the Web service side on session opening.
It stores the session state and information and code for
service offering enforcement, monitoring, and control. The
consumer gets an encrypted reference of the session object
and provides this encrypted reference in every communica-
tion within this session. For individual operation invoca-
tions outside sessions, a lightweight session object might be
generated if needed for management purposes, but its refer-
ence is not passed to the consumer.

4 ISSUES AND CHALLENGES
As already noted, we firmly believe that appropriate man-
agement of compositions of Web services is crucial for
increasing flexibility and adaptability of e- and m-business
Web service-based solutions. In the long run, it might also
be very significant for the success of the Web service plat-
form for complex A2A and B2B integrations. We want to
emphasize the need for Web service management solutions
that are independent from vendors of Web services and
vendors of underlying infrastructure, thus preventing lock-
ins. Web service industrial initiatives and standardization
committees do not currently address management issues.

Note that the W3C’s Web services framework adopts the
“start simple, gradually grow more complex (as needed)”
approach and leveraging existing already widely used stan-
dards. Therefore, it can be very useful to explore applying
and/or extending proven network, distributed system, soft-
ware/application, and service management solutions for the
management of Web services and their compositions. Let
us now note several related issues.

5

As Web services can encapsulate not only software but also
hardware functionality, to successfully manage Web serv-
ices, solutions from different management domains (soft-
ware/application, network, device), levels (resource, desk-
top, system, enterprise, service), and areas (configuration,
security, performance, fault, and accounting management)
have to be integrated. Further, we need appropriate map-
pings between technically-oriented solutions for manage-
ment of Web services and their compositions and business-
oriented service-level management that end users are ulti-
mately interested in. In order to better support such map-
pings, solutions for management of Web services must ad-
dress the price/performance ratio, uninterrupted service
availability, and other issues (both technical and non-
technical) relevant to end users.

In principle, a Web service in one composition or in one
management domain could be viewed as analogous to a
network node. However, there are important differences
that make management of compositions of Web services
more challenging. For example, Web services remain under
full control of their vendors that are often third parties.

SNMP seems suitable for integration with Web services
because it is simple and already widely adopted. Although
a network management protocol it has also been used for
some application management. It should not be too com-
plex to make an appropriate Web services SNMP MIB
(Management Information Base).

While WBEM (Web-Based Enterprise Management) man-
agement solutions, based on XML and CIM, are technically
much more compatible with Web services than SNMP,
they are not yet widely used and their rate of adoption
seems relatively slow. The issues to be studied in this area
include to what extent WBEM solutions can be applied
and/or extended for Web services and what the corre-
sponding CIM schema should address.

The usefulness of existing software (particularly compo-
nent) configuration management solutions and the existing
application management standards like ARM (Application
Response Monitoring) should be also investigated. We
have already stated some related challenges for software
configuration management in [10]. An important configu-
ration management issue currently not addressed by indus-
trial initiatives for composing Web services is minimization
and handling of unexpected feature interactions. Unex-
pected feature interactions cannot be always discovered and
prevented before the composition, although using a com-
prehensive specification of Web services can help in their
minimization. In addition, management solutions for de-
tecting unexpected feature interactions after the composi-
tion and for recovering from such situations are needed.

Another issue is to what extent and at what level of granu-
larity policy-based management can be used. One of the
issues with policy-based management is centralization of
policy storage and decision, which might not appropriate
for third-party Web services distributed over the Internet.

REFERENCES

1. Aimoto, T., Miyake, S. Overview of DiffServ Tech-
nology: Its Mechanisms and Implementation. IEICE
Trans. Inf. & Syst., Vol. E83-D, No. 5 (May 2000), pp.
957-964.

2. Beugnard, A., Jezequel, J.-M., Plouzeau, N., Watkins,
D. Making Components Contract Aware. Computer,
Vol. 32, No. 7 (July 1999), pp. 38-45.

3. Curbera, F., Mukhi, N., Weerawarana, S. On the
Emergence of a Web Services Component Model. In
Proc. of the WCOP 2001 workshop at ECOOP 2001
(Budapest, Hungary, June 2001). On-line at:
http://www.research.microsoft.com/~cszypers/events/
WCOP2001/Curbera.pdf

4. Feng, N., Ao, G., White, T., Pagurek, B. Dynamic
Evolution of Network Management Software by Soft-
ware Hot-Swapping. In Proc. of the Seventh
IFIP/IEEE International Symposium on Integrated
Network Management - IM 2001 (Seattle, USA, May
14-18, 2001), IEEE Publications, pp. 63-76.

5. Hailpern, B., Ossher, H. Extending Objects to Support
Multiple Interfaces and Access Control. IEEE Trans-
actions on Software Engineering, Vol. 16, No. 11 (No-
vember 1990), pp. 1247-1257.

6. Kristiansen L. (ed.) Service Architecture, Version 5.0.
TINA-C (Telecommunications Information Network-
ing Architecture Consortium), June 16, 1997. On-line:
http://www.tinac.com/specifications/documents/sa50-
main.pdf

7. Mennie, D., Pagurek, B. A Runtime Composite Serv-
ice Creation and Deployment and Its Applications in
Internet Security, E-commerce, and Software Provi-
sioning. To be printed in Proc. of the 25th Annual In-
ternational Computer Software and Applications Con-
ference - COMPSAC 2001 (Chicago, USA, October
2001), IEEE Computer Society Press.

8. Mckee, P., Marshall, I. Behavioural Specification us-
ing XML. In Proc. of the 7th IEEE Workshop on Fu-
ture Trends of Distributed Computing Systems -
FTDCS’99, (Cape Town, South Africa, December
1999), IEEE Computer Society Press, pp. 53-59.

9. Oreizy, P., Medvidovic, N., Taylor, R. N. Architec-
ture-Based Software Runtime Evolution. In Proc. of
the International Conference on Software Engineering
1998 - ICSE'98 (Kyoto, Japan, April 1998), ACM
Press, pp. 177-186.

10. Tosic, V., Mennie, D., Pagurek, B. Software Configu-
ration Management Related to Management of Dis-
tributed Systems and Services and Advanced Service
Creation. In Proc. of the SCM-10 workshop at ICSE
2001 (Toronto, Canada, May 2001). On-line at:
http://www.ics.uci.edu/~andre/scm10/papers/tosic.pdf

http://www.research.microsoft.com/~cszypers/events/WCOP2001/Curbera.pdf
http://www.research.microsoft.com/~cszypers/events/WCOP2001/Curbera.pdf
http://www.tinac.com/specifications/documents/sa50-main.pdf
http://www.tinac.com/specifications/documents/sa50-main.pdf
http://www.ics.uci.edu/~andre/scm10/papers/tosic.pdf

	ABSTRACT
	Keywords

	INTRODUCTION
	WEB SERVICES WITH MULTIPLE CLASSES OF SERVICE AND THEIR SPECIFICATION
	DYNAMIC MANAGEMENT OF COMPOSITIONS OF WEB SERVICES WITH MULTIPLE SERVICE OFFERINGS
	ISSUES AND CHALLENGES

